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Abstract—Heat and mass transfer in a two-dimensional radial flow of a viscous fluid through a saturated
porous wedge-shaped region with confining walls is studied. Similarity transformations are used for the
temperature, velocity and pressure, in order to reduce the describing systems to ordinary differential
equations with two-point boundary conditions. Both exact and asymptotic solutions are obtained for the
velocity and the temperature. It is found that two distinct solutions (jet flow type and slug flow type) exist
for a given set of flow parameters. Specific results are presented for small wedge angles. It is shown that
symmetric diverging solutions do not exist above a critical Rayleigh number. An application of the theory
to the convection of liquid water in a crude model of a fault zone in a geothermally active area is

presented.
NOMENCLATURE AT, characteristic temperature difference in the
Dimensional quantities carry a prime, while non- system [defined in equation (39)];
dimensional quantities do not. Vv, del operator;
. 0., semi-wedge angle;

b, extent of fault zone perpendicular to plane Ao reference thermal conductivity of the

of flow; A

ference specific heat at constant pressure; medium;

Cpor € it vect P th tical directi p ' Has reference viscosity of the fluid ;
€5, unit vector in the vertical direction; v, Kinematic viscosity

F, similarity temperature, a pure function of
9 — Trl/‘(! +1);

g, gravity constant ;

G, similarity velocity, a pure function of
0=rh;

ko, reference permeability of the medium ;

L, characteristic length [defined in equation
@ny;

M,  mass flow rate;

P, isotropic pressure, over pressure in the
wedge;

Py, hydrostatic pressure corresponding to the
density pg;

r, radial distance from the apex of the wedge;

S, similarity pressure, a pure function of
9 . Pr--~a/(1+z);

T, temperature at any point in the wedge;

1. Mmaximum temperature in the wedge,
specified at r = 1;

Tos reference temperature ;

v, Darcy velocity vector times density;

Dp radial component of v;

Vg tangential component of v.

Greek symbols
«, exponent of T;

a.0, reference coefficient of thermal expansion;

*Present address: Earth Sciences Division, Building 90,
Lawrence Berkeley Laboratory, University of California,
Berkeley, CA 94720, US.A.

Yo, reference kinematic viscosity;
o, density;
po,  reference density.

1. INTRODUCTION

Stupies of continuous viscous flow between non-
parallel plane walls have been of interest since Jeffery
[7] and Hamel [5] found the exact solutions of the
hydrodynamic equations. Harrison [6], Karman [9],
Tolimien [17], Noether [15] and Dean [1] dealt
with specialized applications of the problem. A
systematic treatment of the general problem was
developed by Rosenhead [16], who presented
similarity-type solutions for different Reynolds num-
bers and wedge angles. Millsaps and Pohlhausen
[13] described the energy transfer associated with
the Jeffery-Hamel hydrodynamic problem. Much
later, Fraenkel [2, 3] showed that the nonuniqueness
properties of the describing mathematical system
lead to the appearance of additional solutions,
Katkov [11] showed that the exact similarity
formulation could be extended to include free
convection if the Boussinesq approximation is used
in the momentum equation, if the dissipation term in
the energy equation is negligible, and if the transport
properties are constant. In this case, the wall
temperatures must be proportional to the reciprocal
of the radial distance cubed. Lu and Chen [12]
developed solutions to the problem formulated by
Katkov [11]. Both convergent and divergent flow
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solutions for different values of Reynolds number
and Prandt]l numbers are presented.

In the present work, we develop exact solutions for
the equations which describe the flow of a liquid in a
saturated porous medium. It is assumed that mass
enters the apex of a wedge-shaped region (Fig. 1)
bounded by impermeable walls, at the rate M'. The
boundary temperature decreases with distance from
the apex at a rate consistent with the similarity
theory used to construct solutions. The thermal
conductivity of the saturated medium, the liquid
specific heat and the thermal expansion coefficient
are constant. Similarity analysis requirements imply
that the liquid viscosity decreases with increasing
temperatures. This property is not unlike that of
water, in which a temperature change from 25 to
225°C causes an 8-fold decrease in the viscosity. The
porous medium is assumed to be isotropic and
homogeneous. It follows that the porosity and
permeability are constant. We examine the effect of
buoyancy on the steady forced convection in a
wedge-shaped region. Radial flow conditions are
invoked so that similarity theory can be employed to
find exact solutions. The basic mathematical system
is reduced to a coupled set of ordinary differential
equations with two-point boundary conditions. A
combination of numerical and analytical methods is
used to solve these equations. The results presented
here are for a slender wedge configuration when
0, « 1. Additional results for other parameter values
can be found in Goyal [4]. The theory is used to
calculate heat and mass transport in a crude model
of a fault zone in the earth’s crust in a manner
similar to that of Kassoy and Zebib [10]. who
considered the cooling of a rising column of hot
liquid in a saturated porous medium within a
channel confined by impermeable walls.

2. DESCRIBING EQUATIONS
The non-dimensional governing equations are

Vv=0, (1)
v = Te;—VP, (2)
Rv-VT = V3T, (3)
where
p' (Darcy velocity vector)
v= R T T (4a)
a0 0AT gk p5 /1o
v T-T,
(T)=—, T=——, 4bc
WT) = - AT (4b)
P’ —P; ’
Tt i<r<m, (dde)
pog'Lae,AT L
R = Rayleigh number
_ LrAng,zreok;)c’,,ou;) . (af)
Vo Amo
On the impermeable boundaries the normal

component of the velocity must vanish and the
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F1G. 1. The wedge-shaped region.

temperature decreases with increasing radial distance
from the origin at a rate compatible with the
similarity theory used for solution development.
Mass flux at any constant radial coordinate is
equivalent to that entering the wedge at the apex. If

v=T7% oz=0, (5)

then equations (1)—(3) can be reduced to ordinary
differential equations by using the following simi-
larity transformations:

G0
L G0 o
,
v, =0, (7)
F(0)
VT ®)
P = r¥1*28(0). (9)

Equation (1} is satisfied identically. The coupled
cquations describing F and G can be written as,

dG d {COS(()t-’?)Fa+1]+°‘G dF (10)

dn - dg ! o+l F dn’
d?F  0*F R,FG
4 S = — . (1)
dp? (1 +a)? a4+ 1
where
0
= R, = ROZ. (12)

Solutions to equations (10) and (11) arc subjected
to the following boundary conditions:

dF !
Fin=1)=1, aﬂ(n=0)=0, M=f Gdn,
" 0 (13a,be)

M = M
2000 ATg'ko L0, /vy
Equations (8) and (13a) imply that the boundary
temperature varies like r ' ¥ Flow symmetry is

{14)




Heat and mass transfer in a saturated porous wedge

imposed by equation (13b). Global mass con-
servation is expressed by equation (13c). The
singularity at r=0 is similar to that found in
theories of this generic type. Once F and G are
found, the pressure field can be obtained from (2)
and (9).
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F1G. 2. Slug flow (F,G) and jet flow (f,g) solutions as a
function of the nondimensional wedge angle (7): a=0,
M=146,=10°, R, —0.

3. ASYMPTOTIC ANALYSIS

Asymptotic methods can be used to facilitate
solution development when the parameters R, and 6,
have certain special values. Low Rayleigh number
solutions (R — 0) can be obtained from the limit
R, 0, 6, fixed. When F = 0(1) and G = O(1), the
lowest-order solutions for « = 0 {constant kinematic
viscosity) are given as follows:

F(n) = cos{(B,n)/cosb,, (15)
cos(26,n) sinf,
G(n) = - 2.
) 2cos 0, +M 2, 8, <mn/2. (16)
In the case of a slender wedge, 8, « 1,
Fx~1, GaM, a7n

implying isothermal slug flow. Thermally induced
variations are enhanced by increasing 4,. Both F and
G decrease monotonically from n=0 to =1 for
any value of 6, (Fig. 2).

A second class of low Rayleigh number solutions

can be found when F = O(G)>» O(1). The
transformations
f g
F=;€gm—+:} and G=§;a {18)

HMIIL - H
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can be used in (10), (11} and (13) to show that

dg _d [cos(@en) f‘*“] ag df (19)
dr] dq 1+a f d
dzf 62 fq
i Y izar ! T Tirw 0)
sn=0 =gy, L mg=o
g (21a,bc)

1
R,M = J gdn.
Q

Second branch solutions, obtained by quasi-
linearization techniques from the lowest-order ap-
proximation to (19)-(21), show large thermal effects
caused by a special velocity distribution near the
origin. Very hot fluid is brought upward in the
central portion, while cooler fluid moves downward
near the wall. The net mass flux is fixed. A
comparison of the two solution branches for R, — 0
is shown in Fig. 2 for « =0, M = 1, and 6, = 10°.
Once R, is chosen, second branch solutions in terms
of F and G can be calculated from (18). It will be
convenient to denote the moderate temperature
solutions as slug flow type, and those with large
temperature variations as jet flow type solutions. The
existence of two solutions of (10)-(13) when R « 1
implies that non-uniqueness may prevail for more
general values of R.

High Rayleigh number solutions (R -»> o) for a
slender wedge can be obtained for the limit
R, = 0(1)}, 8, = 0 when F = O(G) = O(1).

For o = 0, the lowest-order terms of (10), (11) and
(13) are

dG dF
= e, 2
a dy 22)
d*F
G FRFG= 0, (23)
dF
Fim=1)=1, @('7=0)=0,
) (24a,bc)
M= j Gdn.
(4]

A first integral of equations (22) and (23) can be
written as,

dF
—= +./%R, [(es —F)(e;— F){es— F)]'2, (25)
where,
€; +e,+e3 = — A, aconstant, (26)
e e,+e,e;+eey =0, 27

The solution to equation (25) will depend upon
whether the roots e,, e, and e; are real or complex.

The integration of (25) is obtained in terms of an
elliptic function [18] for the real roots e. A
numerical attempt was made to obtain solutions F
and G satisfying boundary conditions (24), for

=10, 20 and 30 with §,=10° and M = 1. No
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solution was found which satisfies (24). It appears
that solutions to the system (22)-(24) do not exist
for real values of ¢, However, a compelling proof,
beyond an extensive computer search, is not obvious.
The integration of (25) for complex roots gives

2R,H\'2
l—cn = n,m
H

F=e¢ - s 28
el (]
1+cen 3 n,m
where
24
G=F+ “‘3"» (29)
ey > 0, €ay3 = ailb, (30)
H? = ¢2—2ae, +a* +b°, 31
H+e —a
= e 32
"= 32)

and cn denotes a standard elliptic function [18].
One may combine (24), (26), (27), (30)-(32) to
show that

-l (57 J]
H? 3 ’

- =1,

3(M +C) : +Cn[<2RZ:,H)1/z’ m]
(33)
H

C = - [~ 2E@)+sn(u)de(u)+u], (34)

1/2
uz(ﬁgi) , (35)
A g 3y C) 36
m*@}}‘[ g ta™M } .

where dc and sn are standard elliptic functions [18].

Equations (33)-(36) are solved for a given R, and
M. Once H and m are known, equations (28) and
(29) are solved for different values #, where

H2
L 37
“E3M10) 7
-23£=M-e,+C. (38)

Here again it is found that the solution to the system
(33)-(36) is not unique for a given set of parameters.
The two types of solution are shown in Figs. 3 and 4.

The existence of easily-obtained solutions for
complex values of e; lends credence to the belief that
solutions do not exist for real ¢,

For wedges of finite included angle, large Rayleigh
number solutions (R — c0) can be obtained for the
limit Rg— o0, 6, fixed. It can be noted that the
highest derivative in F is lost in the energy equation
(11) for this limit, giving rise to the isothermal slug
flow at the cold environmental temperature in the
central core region of the wedge. This implies that
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F1G. 3. Asymptotic and numerical temperature (F) solutions
for slug and jet type flow: a =0, M = 1,0, = 10°, R = 34,
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F1G. 4. Asymptotic and numerical velocity (G} solutions for
slugand jettypeflow: 0 =0, M = 1,8, = 10°, R=34.

core flow would be downward from above, or that
M < 0. This suggests that the solution for M > 0
does not exist. This point can also be proved
mathematically by using an inner variable to keep
the highest derivative in the energy equation (11). It
can be seen that the solution to the resulting
boundary layer equations does not satisfy the
required boundary conditions and hence the diverging
flow can not exist for this limit of Re - 0.
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4. NUMERICAL SOLUTIONS

Numerical solutions are the exact solutions ob-
tained by integrating the coupled nonlinear differen-
tial equations (10){11). The equations were first
quasilinearized (Kalaba [8]) and then trial functions
for F and G, obtained from the two classes of
solutions generated in the asymptotic analysis of
complex roots, are used to generate the two distinct
numerical solutions. In Figs. 3 and 4, a comparison
is made between the lowest-order agymptotic results
and the numerical solutions for the parameters
shown. It can be seen that the maximum difference in
F is about 7.5% for the lower solution, and 9.5% for
the upper. It can be noted that both numerical
solutions show the existence of the reverse flow
regions.

5. RESULTS AND DISCUSSION
Both numerical solutions to {10), (11) and (13) are
plotted in Figs. 5 and 6 for several values of R. It is
observed that these solutions approach each other as
R increases to a limiting value.

0O 02 04 08 08 |0

n—

F1G. 5. Effect of Rayleigh number (R) on the temperature
(F) for slug and jet type flow: a =0, M = 1, 8, == 10°.

As the viscosity—temperature relation in equation
(5) is changed by varying « the temperature
boundary condition on the wall, defined by equa-
tions (8) and (13a), is altered. It follows that a
comparison of solutions at different a-values, with all
other parameters equal, must be treated with care,
because the basic boundary value problems are
altered. In Figs. 7 and 8, the effect of « (kinematic
viscosity exponent) on the temperatures and velocity
profiles is shown. Both solutions show a decrease in
temperature with increasing o (decreasing v). It is
clear from (8) and (13a) that an increase in «
increases the wall temperatures along the length of
the wedge and decreases the temperature gradients
there. For a given specified characteristic tempera-
ture difference across the wedge, an increase in o
would require a corresponding decrease in the heat
transfer through the sides of the wedge. Also, the
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FiG. 6. Effect of Rayleigh number (R) on the velocity (G)
for slug and jet type flow: a =0, M = 1, 8, = 10°.

‘17-——>

Fic. 7. Effect of the viscosity exponent {(a} on the
temperature (F) for slug and jet type flow: M =1, 6, = 10°,
R = 20.

increase in « reduces the local convection effects
because the wall temperatures along the wedge tend
to be constant. Both of these effects give rise to lower
values of F as seen in Fig. 7. Solutions of the jet type
flow are more sensitive to a-variations because of the
generally larger temperature variations compared to
the slug type flow. Velocities are expected to be
higher in jet type flow, because of appreciable
reduction in the kinetic viscosity. This is unlike the
slug type flow with moderate temperatures, in which
velocities are not affected appreciably with changing
« (Fig. 8).

Figure 9 shows a plot of #, vs R,,, for different
values of M and o« Divergent flow, symmetric
solutions exist in the regions below the curve in
question, but do not exist in the regions above the
curve. It can also be seen that R, increases with the
decrease in M and 8, and with increase in o
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F1G. 9. Effect of viscosity exponent («) and mass flow rate
(M) on the maximum Rayleigh number (R,,,) for which
divergent solutions exist.

In Fig. 10, the similarity wedge centerline velocity
G{0) found from numerical computation is plotted as
a function of R for a« = 0,2. Both solution branches
are shown. For a given value of R, we note that the
slug flow solution shows a decrease in G(0) when «
increases. The jet flow solutions display an increase
in G(0). It may be observed again that solutions do
not exist beyond a certain maximum value of R
when other parameters are held constant. The value
of maximum R increases with increasing «. The
centerline velocity for a jet flow solution is higher for
o = 2 because of reduced kinematic viscosity. Asymp-
totic solutions obtained for Ry — 0, F = O(G) »1,
are also plotted for « = 0. It may be observed that
the two solutions are very close when R, — 0.
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F1c. 10. The wedge centerline velocity G(0) vs Rayleigh
number (R)for « = 0,2: M = 1,8, = 10°.

6. APPLICATION TO A HYPOTHETICAL
GEOPHYSICAL PROBLEM

Kassoy and Zebib [10] have considered the
cooling of a rising column of heated water within a
porous medium confined by parallel impermeable
boundaries. An application to the heat and mass
transfer within a fault zone located in a geothermally
active section of the earth’s crust was presented.
Here, we consider a related application to a slender
wedge-shaped fault embedded in the crust of the
earth. The theoretical results are applied to the
section of the wedge between r' = L' and the radial
location at which the wedge intersects the earth’s
surface in order to avoid the singularity at ' = 0.

The following data are assumed:

depth of the fault; D' = 2km,
included angle of the wedge; 26, = 20°,
temperature at the earth’s surface; T, = 25°C,
temperature at ¥’ = L'; Ty = 225°C.

Then it follows that the radial distance from the apex
to the surface is given by rj, = D'/cos 8, = 2.03km.
For the constant viscosity case (¢ = 0), it can be seen
from (4c), (8) and (13a) that

,
AT = (T;—T)) »—m_’il : (39)

where

rp= %‘l (40)

It follows that a relation for L can be obtained in
terms of known quantities from (4f) and (39),

R ;
7. B (41)
rD ] 7]
R+ —=(T3—T;)
¥
where
_]: = Qlaéokbc;oﬂb (42)

&
7 Vo Amo
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The material properties of liquid water appearing in
(42) can be evaluated at the upper boundary of the
crust (T’ = 25°C and p’ = 1atm), in order to find y.
The appropriate values are

%o =2.6x 104K,

5= 10"°cm?,

Cho = 4.179 x 107 cm?/s? - K,
up = 0.891x 10" 2g/cm s,
vy = 0.894 x 10~ 2cm?/s,

Ao = 20.55 x 10*g-cm/s®- K,
po = 09971 g/cm?.

(43)

If R = 20, then one obtains

L' ~01594km, AT ~217K, (44a,b)
characteristic convection velocity

%0AT'g'ky

Vo

~ 0.535cm/day, 45)

characteristic mass flow rate

M’ = 297 x 103kg/day - km. (46)

The Rayleigh number, based on D’ rather than L, is
251.

The centerline temperature and that at the
boundary of the wedge is shown in Fig. 11 as a
function of the radial distance from the apex. For a
slug type flow, the former is a factor of 1.2 larger
than the latter. In contrast, the factor is 5.9 for jet
flow. The temperatures, for a variable viscosity
(o # 0) case, will be different quantitatively, but
qualitatively similar to those presented in Fig. 11. It
is apparent from the graph that the temperatures
predicted for a jet flow are unrealistically large for
geothermal applications involving the convection of
liquid water in rock systems.

A calculation of local pressures at different points
along the wedge centerline was made for the
comparison with the boiling point curve. As an
example the wedge centerline pressures at ¥ = 0.3km
are found to be 165 and 154 atm for the slug and jet
type flows respectively. Upon comparing with the
boiling point curve, it can be concluded that the
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Fi1G. 12. The Nusselt number (Nu) variation with depth in
a model fault zone: «a =0, M = 1,6, = 10°, R = 20.

boiling does not occur for slug type flows but it does
occur for jet flows. This again strengthens our belief
that jet type flows will not be observed in the
physical situation.

In Fig. 12, the radial Nusselt number, defined as
the ratio of the total heat flux across a sector at a
given radial distance to the reference heat con-
duction 20,b'A,,AT’, is plotted as a function of
radial distance. The variation for jet type flow is
observed to be much larger than the slug flow result.
It is noted that the convection process enhances the
heat transfer process by a factor of about 25 for the
more realistic latter flow.

7. CONCLUSIONS

We have developed exact solutions for the equa-
tions which describe diverging radial flow convection
of a variable viscosity liquid in a wedge-shaped
region of saturated porous medium confined by
impermeable walls. It has been shown that the
properties of the solutions depend upon the wedge
half-angle 6,, the mass flow rate M, the Rayleigh
number R, and the viscosity exponent «. For a given
set of parameter values 6, M and «, it has been
found that two distinct solutions exist below a
specific Rayleigh number. Slug flow type solutions
exhibit relatively small variations in velocity and
temperature across the wedge at any radial location.
In most cases, the flow direction is purely uni-
directional. Large gradients in velocity and tempera-
ture and the presence of reverse flow regions
characterize the jet flow type solutions. The latter
property implies that a very special velocity distri-
bution is required at the apex of the wedge. In this
sense, it would be difficult to observe such a flow in
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the laboratory, to say nothing of the geophysical
environment. Further consideration of the physical
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TRANSFERT DE CHALEUR ET DE MASSE DANS UN DIEDRE POREUX SATURE AVEC
DES FRONTIERES IMPERMEABLES

Résumé—On étudie le transfert de chaleur et de masse dans un écoulement bidimensionnel radial de
fluide visqueux a I'intérieur d’un milieu poreux saturé en forme de diédre.

On utilise des transformations de similitude pour la température, la vitesse et la pression, de fagon a
réduire les systémes descriptifs & des équations différentielles ordinaires avec des conditions aux limites en
deux points. On obtient des solutions exactes et asymptotiques pour la vitesse et la température. Deux
solutions distinctes (écoulement de type jet et écoulement piston) existent pour un systéme donné de
paramétres. Des résultats spécifiques sont présentés pour des petits angles de diédre. On montre que les
solutions symétriques divergentes n’existent pas au dessus d’'un nombre de Rayleigh critique. Une
application de la théorie a la convection d’eau liquide est présentée pour une aire géothermiquement

active.

WARME- UND STOFFTRANSPORT IN EINEM GESATTIGTEN, POROSEN KEIL MIT
UNDURCHLASSIGEN RANDERN

Zusammenfassung—Es wird der Wirme- und Stofftransport bei zweidimensionaler radialer Stromung
einer zihen Flissigkeit durch ein gesittigtes, pordses, keil formiges Gebiet mit undurchldssigen Wanden
untersucht. Ahnlichkeitstransformationen werden fiir Temperatur, Geschwindigkeit und Druck benutzt,
um die beschreibenden Systeme auf gewdhnliche Differentialgleichungen mit Zwei-Punkt-
Randbedingungen zu reduzieren. Sowohl exakte als auch asymptotische Losungen werden fiir die
Geschwindigkeit und die Temperatur erhalten. Es wurde gefunden, daB fiir einen gegebenen Satz von
Stromungsparametern zwei unterschiedliche Losungen (Strahlstromung und verzdgerte Stromung)
existieren. Typische Ergebnisse fiir kleine Keilwinkel werden angegeben. Es wird gezeigt, dali oberhalb
einer kritischen Rayleigh-Zahl keine symmetrisch divergierenden Losungen existieren. Die Anwendung
der Theorie auf die Konvektion von fliissigem Wasser im stark vereinfachten Modell einer
Verwerfungszone in einem geothermisch aktiven Gebiet wird gezeigt.
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TEOJO- 1 MACCONEPEHOC B HACBIHEHHOM MOPHCTOM KJIMHE C
HEMPOHHUUAEMbBIMH I'PAHULAMH

Aunnoraums — Mccnenyercs Temno- U MacconepeHoc fpH IBYMEPHOM paHAIbHOM TEYCHHH BI3KOM
KHIKOCTH 4Yepe3 HACHILCHHYIO MOPHCTYIO OTPaHHYEHHYK) CTEHKAMHM KIMHOBUAHYI obnactb. [das
TEMNEPATYPbl, CKOPOCTH M NABJICHHA HCMONb3YIOTCH ABTOMOJACHBLHBIE TpeoOpa3oBaHus, CBOIALUHE
CHCTEMY OCHOBHBIX ypaBHEHHH K OOBLIKHOBEHHBIM AHb(EPeHIMaIbHBIM YPAaBHEHHAM ¢ ABYXTOYEYHBIMH
rPaHUYHBIMH YCJAOBHAMM. ITONMy4eHBbl Kak TOYHbIC, TAK M ACHMIITOTHHMECKHE PELICHHS IS CKOPOCTH
¥ TeMnepaTypbl. HaleHo, 94To npH 3aAaHHBIX NapaMeTpax HMMEKT MECTO ABa PE3KO BLIPAXKEHHBIX
BM/a PEILSHHH (TeueHMst THNA CTPYHHBIX M noa3ywux). [lpeactapnenst pe3ynbTaThl 018 HEGONbILHX
yrioB pacTsopa KinHa. [Toka3aHO OTCYTCTBME DACXOASWIMXCA pelueHuil npu uucnax Penes sbuse
kputnueckoro. [lis rpybolt Moaenn aBapHiiHOR 30HBL B reoTepMaibHO aKTHBHOH 00lacTH npuseneH
PUMED NPWIOKEHHT TCOPHH K 3a/1a4€ O KOHBEKIIHH BOJBI.
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