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Abstract-Heat and mass transfer in a two-dimensional radial flow of a viscous fluid through a saturated 
porous wedge-shaped region with confining walls is studied. Similarity transformations are used for the 
temperature, velocity and pressure, in order to reduce the describing systems to ordinary differential 
equations with two-point boundary conditions. Both exact and asymptotic solutions are obtained for the 
velocity and the temperature. It is found that two distinct solutions (jet Aow type and slug flow type) exist 
for a given set of flow parameters. Specific results are presented for small wedge angles. It is shown that 
symmetric diverging solutions do not exist above a critical Rayleigh number. An application of the theory 
to the convection of liquid water in a crude model of a fault zone in a geothe~ally active area is 

presented. 

NOMENCLATURE 

Dimensional quantities carry a prime, while non- 
dimensional quantities do not. 

extent of fault zone perpendicular to plane 
of flow; 
reference specific heat at constant pressure; 
unit vector in the vertical direction; 
similarity temperature, a pure function of 
@ = Tr”‘l +xt. 

gravity constant ; 
similarity velocity, a pure function of 
H = rV,; 

reference permeability of the medium; 
characteristic length [defined in equation 

(4l)l; 
mass flow rate ; 
isotropic pressure, over pressure in the 
wedge ; 
hydrostatic pressure corresponding to the 
density p,,; 
radial distance from the apex of the wedge; 
similarity pressure, a pure function of 
0 = Pr .- “/( 1 + 2) ; 

temperature at any point in the wedge; 
maximum temperature in the wedge, 
specified at r = 1; 
reference temperature; 
Darcy velocity vector times density; 
radial component of v ; 
tangential component of v. 

Greek symbols 

a, exponent of T; 

aeol reference coefficient of thermal expansion ; 

*Present address: Earth Sciences Division. Building 90, 
Lawrence Berkeley Laboratory, University of California, 
Berkeley, CA 94720, U.S.A. 

AT, characteristic temperature difference in the 
system [defined in equation (39)] ; 
de1 operator; 
semi-wedge angle; 
reference thermal conductivity of the 
medium ; 
reference viscosity of the fluid ; 
kinematic viscosity; 
reference kinematic viscosity; 
density; 
reference density, 

1. INTRODUCTION 

STUDIES of continuous viscous flow between non- 
parallel plane walls have been of interest since Jeffery 
[7] and Hamel [S] found the exact solutions of the 
hydrodynamic equations. Harrison [6], Karman [9], 
Tollmien [17], Noether [15] and Dean [I] dealt 
with specialized applications of the problem, A 
systematic treatment of the general problem was 
developed by Rosenhead [16], who presented 
similarity-type solutions for different Reynolds num- 
bers and wedge angles. Millsaps and Pohlhausen 
[ 131 described the energy transfer associated with 
the Jeffery-Hamel hydrodynamic problem. Much 
later, Fraenkel [Z, 31 showed that the nonuniqueness 
properties of the describing mathematical system 
lead to the appearance of additional solutions. 

Katkov [ll] showed that the exact similarity 
formulation could be extended to include free 

convection if the Boussinesq approximation is used 
in the momentum equation, if the dissipation term in 
the energy equation is negligible, and if the transport 
properties are constant. In this case, the wall 
temperatures must be proportional to the reciprocal 
of the radial distance cubed. Lu and Chen [12] 
developed solutions to the problem formulated by 
Katkov [l I]. Both convergent and divergent flow 



FIG. 1. The wedge-shaped region. 
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solutions for different values of Reynolds number 
and Prandtl numbers are presented. 

In the present work, we develop exact solutions for 
the equations which describe the flow of a liquid in a 
saturated porous medium. It is assumed that mass 
enters the apex of a wedge-shaped region (Fig. 1) 
bounded by impermeable walls, at the rate M’. The 
boundary temperature decreases with distance from 
the apex at a rate consistent with the similarity 
theory used to construct solutions. The thermal 

conductivity of the saturated medium, the liquid 
specific heat and the thermal expansion coefficient 

are constant. Similarity analysis requirements imply 
that the liquid viscosity decreases with increasing 
temperatures. This property is not unlike that of 
water, in which a temperature change from 25 to 
225°C causes an S-fold decrease in the viscosity. The 
porous medium is assumed to be isotropic and 
homogeneous. It follows that the porosity and 
permeability are constant. We examine the effect of 

buoyancy on the steady forced convection in a 
wedge-shaped region. Radial flow conditions are 

invoked so that similarity theory can be employed to 
find exact solutions. The basic mathematical system 
is reduced to a coupled set of ordinary differential 
equations with two-point boundary conditions. A 
combination of numerical and analytical methods is 
used to solve these equations. The results presented 
here are for a slender wedge configuration when 
0, << I. Additional results for other parameter values 
can be found in Goyal [4]. The theory is used to 
calculate heat and mass transport in a crude model 
of a fault zone in the earth’s crust in a manner 
similar to that of Kassoy and Zcbib [IO]. who 
considered the cooling of a rising column of hot 
liquid in a saturated porous medium within a 
channel confined by impermeable walls. 

temperature decreases with increasing radial distance 
from the origin at a rate compatible with the 
similarity theory used for solution development. 
Mass flux at any constant radial coordinate is 
equivalent to that entering the wedge at the apex. If 

then equations (l))(3) can be reduced to ordinary 
differential equations by using the following simi- 
larity transformations: 

Equation (I) is satisfied identically. The coupled 
equations describing F and G can be written as. 

2. DESCRIBING EQUATIONS 

The non-dimensional governing equations are 

v,v = 0, (1) 

vv = Te,-VP. (2) 

Rv.VT = V2T, (3) 

where 

p’ (Darcy velocity vector) where 
v= 

cc:,AT’g’kbp&2/p; ’ 
(4a) 

v(T) = :> 
T’- T; 

T=---- 
0 AT’ ’ 

(4b,c) Solutions to equations (IO) and (I I ) arc subjcctcd 
to the following boundary conditions: 

P= 
P’- P;, 

pbg’L.‘aebAT’ ’ 
r=&, 1 $r<m, (4d,e) 

R = Rayleigh number 

L’AT’g’a&k&& 
= 

,,‘2i’ (4f) 
0 InO 

On the impermeable boundaries the normal 
component of the velocity must vanish and the 

~1 zz T-‘, a 3 0, (5) 

F(B) 
_T = ~ 

).l/ll +x1 ’ 

p = rr”l +“‘S(O). 

dG 

dv 

F”+, + zC dF 

1 F dq’ 
(I()) 

d2F OSF R,,FG 

d12 +(l +a)2 = - X+1 
(11) 

(13 

dF 
F(v/= l)=l, s (q = 0) = 0, M = 

I’ 
G‘drl, 

0 (13a,b,c) 
where 

M’ 
M= 

2pba:oAT’g’kbL’o,/vb 
(14) 

Equations (8) and (13a) imply that the boundary 
temperature varies like r-1/(1+x). Flow symmetry is _ 
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imposed by equation (13b). Global mass con- 
servation is expressed by equation (13~). The 
singularity at r = 0 is similar to that found in 
theories of this generic type. Once F and G are 
found, the pressure field can be obtained from (2) 
and (9). 
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can be used in (lo), (11) and (13) to show that 

d2f 0; 

dq 
-_f=-k 

--? + (1 +c# lfu’ 
(20) 

“\ f d -6 

‘\ 

FIG. 2. Siug flow (F,G) and jet flow (f,~) solutions as a 
function of the nondimensional wedge angle (q): t( = 0, 

M= l,l9,= IOO,Re-+O. 

3. ASYMPTOTIC ANALYSIS 

Asymptotic methods can be used to facilitate 
solution development when the parameters R,, and 8, 
have certain special values, Low Rayleigh number 
solutions (R +O) can be obtained from the limit 
R,, -+ 0, 0, fixed. When F = O(1) and G = O(l), the 
lowest-order solutions for c( = 0 (constant kinematic 
viscosity) are given as follows: 

F(rl) = cos(0,r)/cos Be. (15) 

cos (2BJ) . 
G(q) = 2cos Q 

~+M-~i$ B,<n/2. (16) 
e e 

In the case-of a slender wedge, 8, CC 1, 

F=l, GzM, (17) 

implying isothermal slug how. Thermally induced 
variations are enhanced by increasing Be Both F and 
G decrease monotonically from v = 0 to r] = 1 for 
any value of 8, (Fig. 2). 

A second class of low Rayleigh number solutions 
can be found when F = O(G) >> O(1). The 
transformations 

f F=--- 
R;!” +a) 

and G=E, (18) 
I) 

s 1 Wa,W 
R,M = gdv. 

0 

Second branch solutions, obtained by quasi- 
linearization techniques from the lowest-order ap 
proximation to (19)-(21), show large thermal effects 
caused by a special velocity distribution near the 
origin. Very hot fluid is brought upward in the 
central portion, while cooler fluid moves downward 
near the wall. The net mass flux is fixed. A 
comparison of the two solution branches for R, -+ 0 
is shown in Fig. 2 for DL = 0, M = 1, and 8, = 10”. 
Once R. is chosen, second branch solutions in terms 
of F and G can be calculated from (18). It will be 
convenient to denote the moderate temperature 
solutions as slug flow type, and those with large 
temperature variations as jet flow type solutions. The 
existence of two solutions of (lo)-(13) when R K 1 
implies that non-uniqueness may prevail for more 
general values of R. 

High Rayleigh number solutions (R -+ co) for a 
slender wedge can be obtained for the limit 
R,, = O(l), 8, --t 0 when F = O(G) = O(1). 

For c1 = 0, the lowest-order terms of (lo), (11) and 
(13) are 

dG dF 

z=dy* (22) 

dZF 
-+R,FG=O, 
dr1’ 

(23) 

F(q) = 1) = 1, d; (r) = 0) = 0, 

ri (24a,b,c) 
M= J Gdr/. 

0 

A first integral of equations (22) and (23) can be 
written as, 

g= i~[(el-F)(e2-F)(e3-F)]‘!‘, (25) 

where, 
et + e, + e3 = -A, a constant, (26) 

e,e,+e,e,+e,ei = 0. (27) 

The solution to equation (25) will depend upon 
whether the roots e,, e, and e3 are real or complex. 

The integration of (25) is obtained in terms of an 
elliptic function [lg] for the real roots ei. A 
numerical attempt was made to obtain solutions F 
and G satisfying boundary conditions (24), for 
R = 10, 20 and 30 with t?, = 10” and M = 1. No 
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solution was found which satisfies (24). It appears I I , / , t 
that solutions to the system (22)-(24) do noi‘exist 
for real values of e,. However, a compelling proof, 
beyond an extensive computer search, is not obvious. 

The integration of (25) for complex roots gives 

where 

e, > 0, e213 = a+ib (30) 

H2 = e:-2ae, +a2+b2, (31) 

H+e,-a 
I??= 

2H 1 
(321 

and cn denotes a standard elliptic function [IS]. 
One may combine (24), (26), (27), (30)-(32) to 

show that 

0 0.2 0 4 0.6 0.8 1.0 

17- 

FIG. 3. Asymptotic and numerical temperature (F) solutions 
forslugandjettypeflow:r=O~M=1,ff,=l0”,R=34. 

where dc and sn are standard elliptic functions [ 181, 
Equations (33)-(36) are solved for a given R,, and 

M. Once H and m are known, equations (28) and 
(29) are solved for different values q, where 

H2 

el=T@T-Fyv (37) 

0.2 0.4 0.6 0.0 IO 

$=M--e,+C. (38) 

Here again it is found that the solution to the system 
(33)-(36) is not unique for a given set of parameters. 
The two types of solution are shown in Figs. 3 and 4. 

The existence of easily-ob~in~ solutions for 
complex values of e, lends credence to the belief that 
solutions do not exist for real e,. 

For wedges of finite included angle, large Rayleigh 
number solutions (R + co) can be obtained for the 
limit Rg+ co, Oe fixed. It can be noted that the 
highest derivative in F is lost in the energy equation 
(11) for this limit, giving rise to the isothermal slug 
flow at the cold environmental temperature in the 
central core region of the wedge. This implies that 

9- 

FIG. 4. Asymptotic and numerical velocity (G) solutions for 
slugandjettypeflow:a=O,M= I,@,= lO”,R=34. 

core flow would be downward from above, or that 
M < 0. This suggests ihat the solution for M > 0 
does not exist. This point can also be proved 
mathematically by using an inner variable to keep 
the highest derivative in the energy equation (II). It 
can be seen that the solution to the resulting 
boundary layer equations does not satisfy the 
required boundary conditions and hence the diverging 
flow can not exist for this limit of & -+ co. 
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4. NUMERICAL SOLUTIONS 

Numerical solutions are the exact solutions ob- 
tained by integrating the coupled nonlinear differen- 
tial equations (lO)-(ll). The equations were first 
quasilinearized (Kalaba [S]) and then trial functions 
for F and G, obtained from the two classes of 
solutions generated ‘in the asymptotic analysis of 
aomplex roots, are used to generate the two distinct 
numerical solutions. In Figs. 3 and 4, a comparison 
is made between the lowest-order asymptotic results 
and the numerical solutions for the parameters 
shown. It can be seen that the maximum difference in 
F is about 7.5% for the lower solution, and 9.5% for 
the upper. It can be noted that both numerical 
solutions show the existence of the reverse flow 
regions. 

5. RESULTS AND DISCUSSION 

Both numerical solutions to (lo), (11) and (13) are 
plotted in Figs. 5 and 6 for several values of R. It is 
observed that these solutions approach each other as 
R increases to a limiting value. 

IO 

t 
-._ R:20 

--- Rx30 

0 0.2 0.4 0.6 0.8 I.0 
7)- 

FIG. 5. Effect of Rayleigh number (R) on the temperature 
(F) for slug and jet type flow: a = 0, M = 1, 0, = lo”. 

FIG. 6. Effect of Rayleigh number (R) on the velocity (G) 
for slug and jet type flow: cx = 0, M = 1, 8, = 10”. 

As the viscosity-temperature relation in equation 
(5) is changed by varying or, the temperature 
boundary condition on the wafl, defined by equa- 
tions (8) and (13a), is altered. It follows that a 
comparison of solutions at different cr-values, with all 
other parameters equal, must be treated with care, 
because the basic boundary value problems are 
altered. In Figs. 7 and 8, the effect of c( (kinematic 
viscosity exponent) on the temperatures and velocity 
profiles is shown. Both solutions show a decrease in 
temperature with increasing c( (decreasing v). It is 
clear from (8) and (13a) that an increase in tl 
increases the wall temperatures along the length of 
the wedge and decreases the temperature gradients 
there. For a given specified characteristic tempera- 
ture difference across the wedge, an increase in c[ 
would require a corresponding decrease in the heat 
transfer through the sides of the wedge. Also, the 
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M=l 

\ R=20 
\ 

- / 
\ 

Be= too 
\ 

JFTFLOf ‘\ 
-_..=I=: a=0 
C (I= I 

0 0.2 0.4 0.6 0.8 1.0 
?r- 

FIG. 7. Effect of the viscosity exponent (a) on the 
temperature (F) for slug and jet type flow: M = 1, 8, = IO”, 

R = 20. 

increase in c( reduces the local convection effects 
because the wall temperatures along the wedge tend 
to be constant. Both of these effects give rise to lower 
values of F as seen in Fig. 7. Solutions of the jet type 
flow are more sensitive to a-variations because of the 
generally larger temperature variations compared to 
the slug type flow. Velocities are expected to be 
higher in jet type flow, because of appreciable 
reduction in the kinetic viscosity. This is unlike the 
slug type flow with moderate temperatures, in which 
velocities are not affected appreciably with changing 
c( (Fig. 8). 

Figure 9 shows a plot of 8, vs R,, for different 
values of M and CI. Divergent flow, symmetric 
solutions exist in the regions below the curve in 
question, but do not exist in the regions above the 
curve. It can also be seen that R,,, increases with the 
decrease in M and @__, and with increase in cc. 
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FIG. 8. Effect of the viscosity exponent (G() on the velocity (G) 6. APPLICATION TO A HY~~TI~AL 
for slug and jet type flow: M = 1, l& = lo”, R = 20. GEOPHYSICAL PROBLEM 

I I I I I I 

50’ , 

01 I I I I I I I 
0 IO 20 30 40 50 60 70 

R mox - 

FIG. 9. Effect of viscosity exponent (G() and mass flow rate 
(M) on the maximum Rayleigh number (R,,,) for which 

divergent solutions exist. 

In Fig. 10, the similarity wedge centerline velocity 
G(0) Sound from numerical computation is plotted as 
a function of R for a = 0,2. Both solution branches 
are shown. For a given value of R, we note that the 
slug flow solution shows a decrease in G(0) when CI 
increases. The jet flow solutions display an increase 
in G(O). It may be observed again that solutions do 
not exist beyond a certain maximum value of R 
when other parameters are held constant. The value 
of maximum R increases with increasing CI. The 
centerline velocity for a jet flow solution is higher for 
c( = 2 because of reduced kinematic viscosity. Asymp- 
totic solutions obtained for Rs-+O, F = O(G) >> 1, 
are also plotted for a = 0. It may be observed that 
the two solutions are very close when R,, -+ 0. 

lOOO+ , 1 I I I I = 
1 

i 
M=l 

-\ @,*I00 

- Asymptotic analysis 
for (I = 0 

0 IO 20 30 40 50 60 70 
A- 

FIG. 10. The wedge centerline velocity G(0) vs Rayleigh 
number (R) for LX = 42 : A4 = 1,6, = 10”. 

Kassoy and Zebib [lo] have considered the 
cooling of a rising column of heated water within a 
porous medium confined by parallel impermeable 
boundaries. An application to the heat and mass 
transfer within a fault zone located in a geothermally 
active section of the earth’s crust was presented. 
Here, we consider a related application to a slender 
wedge-shaped fauh embedded in the crust of the 
earth. The theoretical results are applied to the 
section of the wedge between r’ = L’ and the radial 
location at which the wedge intersects the earth’s 
surface in order to avoid the singularity at I’ = 0. 

The following data are assumed : 

depth of the fault ; D’ = 2 km, 
included angle of the wedge; 26, = 20”, 

temperature at the earth’s surface; q’ = 25”C, 
temperature at r’ = L’; TL = 225°C. 

Then it follows that the radial distance from the apex 
to the surface is given by rh = D’/cos Oe = 2.03 km. 
For the constant viscosity case (a = 0), it can be seen 
from (4c), (8) and (13a) that 

(39) 

where 

6 
rD=--. 

L’ 
(40) 

It follows that a relation for L’ can be obtained in 
terms of known quantities from (4f) and (39), 

(42) 
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The material properties of liquid water appearing in 

(42) can be evaluated at the upper boundary of the 
crust (T’ = 25°C and p’ = 1 atm), in order to find y. 

1583 

I t I I I I 

2.0 I I 

1.8 - 
The appropriate values are 

a:, = 2.6 x 10-4/K, 
kb = 10-gcm2, 

cbO = 4.179 x 10’ cm2/s2. K, 

& = 0.891 x lo-‘g/cm.s, 
vb = 0.894 x lo-’ cm2/s, 

J.L,, = 20.55 x 104g.cm/s3.K, 
~b = 0.9971 g/cm3. 

If R = 20, then one obtains 

L’ = 0.1594 km, AT’ 1: 217 K, 

characteristic convection velocity 

&AT’g’VO 

vb 
N 0.535 cm/day, 

characteristic mass flow rate 

M’ = 2.97 x 10’ kg/day. km. 

(43) 

WW) 

(45) 

(46) 

The Rayleigh number, based on D’ rather than L’, is 
251. 

The centerline temperature and that at the 
boundary of the wedge is shown in Fig. 11 as a 
function of the radial distance from the apex. For a 
slug type flow, the former is a factor of 1.2 larger 
than the latter. In contrast, the factor is 5.9 for jet 
flow. The temperatures, for a variable viscosity 
(a # 0) case, will be different quantitatively, but 
qualitatively similar to those presented in Fig. 11. It 
is apparent from the graph that the temperatures 
predicted for a jet flow are unrealistically large for 
geothermal applications involving the convection of 
liquid water in rock systems. 

A calculation of local pressures at different points 
along the wedge centerline was made for the 
comparison with the boiling point curve. As an 
example the wedge centerline pressures at r’ = 0.3 km 
are found to be 165 and 154atm for the slug and jet 
type flows respectively. Upon comparing with the 
boiling point curve, it can be concluded that the 

21, 1 I , I 1 , I I , , , I , I I , 1, I I1 

FIG. 11. The dimensional temperature variation with depth 
in a model fault zone: a = 0, A4 = 1, 0, = lo”, R = 20. 
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FIG. 12. The Nusselt number (Nu) variation with depth in 
a model fault zone: c( = 0, A4 = 1, f3e = lo”, R = 20. 

boiling does not occur for slug type flows but it does 
occur for jet flows. This again strengthens our belief 
that jet type flows will not be observed in the 
physical situation. 

In Fig. 12, the radial Nusselt number, defined as 
the ratio of the total heat flux across a sector at a 
given radial distance to the reference heat con- 
duction 2Q,b’&,AT’, is plotted as a function of 
radial distance. The variation for jet type flow is 

observed to be much larger than the slug flow result. 
It is noted that the convection process enhances the 
heat transfer process by a factor of about 25 for the 
more realistic latter flow. 

7. CONCLUSIONS 

We have developed exact solutions for the equa- 
tions which describe diverging radial flow convection 

of a variable viscosity liquid in a wedge-shaped 
region of saturated porous medium confined by 
impermeable walls. It has been shown that the 
properties of the solutions depend upon the wedge 
half-angle Q,, the mass flow rate M, the Rayleigh 
number R, and the viscosity exponent a. For a given 

set of parameter values 0,, M and t(, it has been 
found that two distinct solutions exist below a 

specific Rayleigh number. Slug flow type solutions 
exhibit relatively small variations in velocity and 
temperature across the wedge at any radial location. 
In most cases, the flow direction is purely uni- 
directional. Large gradients in velocity and tempera- 
ture and the presence of reverse flow regions 
characterize the jet flow type solutions. The latter 
property implies that a very special velocity distri- 
bution is required at the apex of the wedge. In this 
sense, it would be difficult to observe such a flow in 
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the laboratory, to say nothing of the geophysical 
environment. Further consideration of the physical 
significance of the jet flow would require a spatial 
stability analysis, such as that described in [lo], in 
order to determine whether such a flow is a stable 
asymptotic solution to a well-developed parabolic 
differential equation. On the basis of the presence of 
extensive reverse flow regions, one may conjecture 
that instability will be found. 

The nonexistence of two-dimensional symmetric 

radial flow solutions above a specific critical Ray- 
leigh number suggests that: (a) asymmetric solutions, 

like those considered in [2,3] should be sought and 
(b) non-planar flow associated with the influence of 
natural convection, like that studied in [lo], should 
be considered. 
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TRANSFERT DE CHALEUR ET DE MASSE DANS UN DIEDRE POREUX SATURE AVEC 
DES FRONTIERES IMPERMEABLES 

R&umb&On ktudie le transfert de chaleur et de masse dans un koulement bidimensionnel radial de 
fluide visqueux B l’inttrieur d’un milieu poreux saturt en forme de diidre. 

On utilise des transformations de similitude pour la temptrature, la vitesse et la pression, de faGon I 
rtduire les systemes descriptifs B des iquations diff&rentielles ordinaires avec des conditions aux limites en 
deux points. On obtient des solutions exactes et asymptotiques pour la vitesse et la tempirature. Deux 
solutions distinctes (tcoulement de type jet et &coulement piston) existent pour un systeme don& de 
paramitres. Des r&sultats spkifiques sont prtsent& pour des petits angles de dikdre. On montre que les 
solutions symttriques divergentes n’existent pas au dessus d’un nombre de Rayleigh critique. Une 
application de la thtorie g la convection d’eau liquide est pr&sent&e pour une aire gkothermiquement 

active. 

W#RME- UND STOFFTRANSPORT IN EINEM GESATTIGTEN, POROSEN KEIL MIT 
UNDURCHLIiSSIGEN RWNDERN 

Zusammenfassung-Es wird der Warme- und Stofftransport bei zweidimensionaler radialer Striimung 
einer zPhen Fliissigkeit durch ein gessttigtes, poriises, keil fdrmiges Gebiet mit undurchllssigen Wanden 
untersucht. ;ihnlichkeitstransformationen werden fiir Temperatur, Geschwindigkeit und Druck benutzt, 
urn die beschreibenden Systeme auf gewiihnliche Differentialgleichungen mit Zwei-Punkt- 
Randbedingungen zu reduzieren. Sowohl exakte als such asymptotische LGsungen werden fiir die 
Geschwindigkeit und die Temperatur erhalten. Es wurde gefunden, dal3 fiir einen gegebenen Satz von 
StrGmungsparametern zwei unterschiedliche Liisungen (StrahlstrGmung und verzijgerte StrGmung) 
existieren. Typische Ergebnisse fiir kleine Keilwinkel werden angegeben. Es wird gezeigt, dal3 oberhalb 
einer kritischen Rayleigh-Zahl keine symmetrisch divergierenden LGsungen existieren. Die Anwendung 
der Theorie auf die Konvektion von fliissigem Wasser im stark vereinfachten Model1 einer 

Verwerfungszone in einem geothermisch aktiven Gebiet wird gezeigt. 
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TERJIO- M MACCOIIEPEHOC B HACbI~EH~OM IlOPMCTOM KJIMHE C 
HEn~H~~AEMbIM~ rPAH~UAM~ 

AtmoTauHa - MCCRenyeTCR Tenno- k4 MacconepeHoc npe JIB~M~PHOM pansanbHoM TeSeHiiW BwKOii 

l0iflKOCTki 9epe3 HaCbILUeHHyKI nOpHCTytO OrpaHH’leHHyIO CTeWKElMA KflHHOBH~Hylo o6nacrb. Ann 

TCMnepaTypbl. CKOpOCTvl II LIaBJleHHR HCnOJlb3yIOTCSl aBTOMOLleJlbHble npeo6pa3oeaHki~. CRODllLlNe 

WCTeMy OCHOBHbIX y&XSBHeHk&i K 06bIKHOBeHHbIM ~H@$e~HUHEIJlbHblM YpiWZHeHHSlM C DByXTO’le4HbIMH 

rpaHH’IHblMH yC,IOBWIMH. ,-,O,Iy’IeHbI KaK TO’IHbIe. TBK H aCWM,‘ITOTHYeCKWe pe,UeHASl Mll CbOpOCTH 

H TeMnepaTypbI. HaiiaeHo. ‘IT0 npki 3allaHHblX napaMeTpaX UMetOT MeCTO LIBa pe3KO BblpameHHbIX 

BHUa peUieHHi (TC’ieHUfl Tllna CTpyiiHblX H nOJl3yUIHX). npeLlCTaBJIeHb1 F3yJlbTaTbl ilJlR He6oJIbUIHX 

ymoB pac-reopa KnHHa. lloKa3aHo oTcyTcT9se pacxonmmxca peuiewiii npki 9icnax Penes Fibwe 

KpNTH~eCKOrO. &I!4 rpytioii MOaWR aBapiitiHOii 30HbI. B FeOTepMaJlbHO aKTIlBHO6 06JIaCTH npllBeIleH 

ffpHMep IipiiJJOXeHHS TCOpHH K 3ana‘Ie 0 KOHBeKURH BOitbI. 


